Bayesian shrinkage estimation of negative multinomial parameter vectors
نویسندگان
چکیده
منابع مشابه
E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function
Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...
متن کاملParameter Estimation for the Dirichlet-Multinomial Distribution
In the 1998 paper entitled Large Cluster Results for Two Parametric Multinomial Extra Variation Models, Nagaraj K. Neerchal and Jorge G. Morel developed an approximation to the Fisher information matrix used in the Fisher Scoring algorithm for finding the maximum likelihood estimates of the parameters of the Dirichlet-multinomial distribution. They performed simulation studies comparing the res...
متن کاملAdaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors
Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...
متن کاملBayesian Methods of Parameter Estimation
The frequentest approach is the classical approach to parameter estimation. It assumes that there is an unknown but objectively fixed parameter θ [3]. It chooses the value of θ which maximizes the likelihood of observed data [4], in other words, making the available data as likely as possible. A common example is the maximum likelihood estimator (MLE). The frequentest approach is statistically ...
متن کاملBayesian Masking: Sparse Bayesian Estimation with Weaker Shrinkage Bias
A common strategy for sparse linear regression is to introduce regularization, which eliminates irrelevant features by letting the corresponding weights be zeros. However, regularization often shrinks the estimator for relevant features, which leads to incorrect feature selection. Motivated by the above-mentioned issue, we propose Bayesian masking (BM), a sparse estimation method which imposes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2020
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2020.104653